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In this paper, the DR-BEM formulation for analysis of thermoelasticity problems is

presented. The derived particular solutions for displacements and tractions are provided

and, moreover, numerical implementation is briefly discussed. The method ensures a

meshless treatment of domain integrals and numerically efficient algorithm for analysis

of thermoelastic deformations in an arbitrary geometry and loading conditions. The

validity and the high accuracy of the formulation are demonstrated considering a series

of examples, in which obtained calculation results are compared with analytical and/or

FEM solutions.
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1. Introduction

One of the most crucial and time-consuming parts of any
numerical simulation is the discretization of the domain of in-
terest. An implementation of the Boundary Element Method
(BEM) as a numerical technique not only simplifies this task,
as only surface mesh is generated, but also provides highly
accurate calculation results for all variables of interest, which
in thermoelasticity problems are: displacements, strains, and
stresses. However, the integral representation of the govern-
ing differential equation for thermoelastic deformation con-
tains, originated from the thermal strain, a domain integral
term. In the case of constant isotropic material properties
this integral can be effectively converted to an equivalent
boundary one by techniques which use the Galerkin tensors,
particular solutions or Radial Integration Method'V. Un-
fortunately, in many engineering applications material prop-
erties exhibit dependency on temperature, and these tech-
niques fail for such a nonlinear problem. Present BEM pro-
cedures for non-linear thermoelasticity involve, in this situ-
ation, discretization of the domain of interest into internal
cells. Naturally, it is highly undesirable approach, as one
of the main advantages of the BEM, namely boundary-only
discretization, is lost.

The Dual Reciprocity Method (DRM)(z) is a robust tech-

nique, which can deal with domain integrals originated from

an arbitrary in-homogeneous term of the governing differ-
ential equation. In this method, the body force quantities
are approximated by a series of prescribed basis functions,
and then transformed to the boundary integrals employing
particular solutions.

This paper presents a general, DRM-based BEM formula-
tion for thermoelasticity problems, capable of handling non-
linear material properties, arbitrary geometry and loading
conditions, providing meshless treatment of domain inte-
grals.

The next Section presents the boundary integral formu-
lation for steady-state thermoelasticity, while in the follow-
ing Sections the derived particular solutions are outlined,
and numerical implementation of the technique is briefly
discussed. Finally, a series of examples, validating the de-
rived formulation and demonstrating its high accuracy, is

presented.

2. BIE formulation for thermoelasticity
Mathematical model of general isotropic steady-state ther-

moelasticity contains:
e equilibrium equation

oiji+ Bj = (1)



e constitutive equation
0ij = Aij€ki + 2p€i5 — Dpdy; 2

e and (linear) strain-displacement relationship

1
€ij = 5 (w5 + uj,i) (3)
where
D=3x+2u 4
0
v=[ o %)
Ores

In the foregoing equations o, £, u, and 8 stand for stress,
(total) strain, displacement, and temperature, respectively,
while ¢, 8ij, A, p, and 6,5 denote coefficient of thermal
expansion, Kronecker’s symbol, Lamé’s constants, and refer-
ence (stress-free) temperature. In this study, it is assumed
that both modulus of elasticity, F, and coefficient of ther-
mal expansion, «a, are known functions of temperature, while
Poisson’s ratio, v, is temperature invariant.

Substituting the constitutive relation into the equilibrium
equation and neglecting the mechanical body forces, Bj,

yields Navier’s (governing) equation:

(A + p) wigs + pujsi + ps (Wi + u5:) + A ui
-D¢;—-D;p=0 (6)

Exploiting the definitions of Lamé’s constants and nor-

malizing Eq. (6) by value of modulus of elasticity, E (6),

gives:
Aujii+ (A + Buigi +b; =0 (7
where
bj = —ﬁa)[ﬁﬂi (0) (wij +usi) + AE,; (6) ui,i
- DE;(0)¥— DE(6)v,;] (8)
and
= Twmaey “
o 1
e T (10
D=3)+2n (11)

The derivatives of modulus of elasticity and thermal ex-
pansion, appearing in (8), can be re-expressed using the

chain rule as:

E,;(0)=Eb,; (12)
¥,5 (6) = v,60,5 (13)
and, thus, Eq. (8) restated in the form of:
bj =b1+ba+bs+bs (14)
where
_Ep
b = —uFG,i (ui,5 + u5,5) (15)

by = —;\T'o,jui,i (16)
- F

by = Dwf'”o,j (17)

b4 = Dao,j (18)

Integral representation of Navier’s Eq. (6) is obtained by
employing fundamental solutions and integrating by parts to

give:
CimU; + /(t;mUj — Ujmt;) dl — f)/ tim¥n; dT'
r r

Q

where uj,, and t},, denote fundamental solutions for dis-
placements and tractions, respectively, and Q and I" stand
for domain and its boundary. The domain integral (on the
right-hand side) of (19) is converted to the boundary one
by means of the Dual Reciprocity Method(?) (DRM). The

in-homogeneous term is approximated by means of:

N4L
b= Bif(z,2) (20)

=1
where ﬂ_,f-, f (a:,z’), N, and L are approximation coefficients,
approximating (basis) functions, numbers of boundary and
internal DRM collocation points, respectively. Substituting
it into original differential equation, multiplying by the fun-
damental solution and integrating by parts yields the final

form of integral representation given by:

CimUj +/t;muj dr—/u;mt,- dr'—b/t;m'd)nj dr
r r r
N+L

= Z ﬁ; {ij‘&jn + / t;mﬁj-n dl’ — /u;mfjn dl‘} (21)
T r

i=1

where 1, and £;» are particular solutions, which are derived

and briefly discussed in the next Section.

3. Particular solutions
In this paper, particular solutions of Navier’s equation:

NMikn, ik + B (6ikd5t + 6idjk) Ghn i = O f(z, 2°) (22)

are obtained by means of Hormander method,®) namely:

4= L% (23)
where: f
9= GetL (24)

and L is the differential operator, L its co-factors, while f is
a vector of known terms (an approximation functions here).

For the problems under consideration it leads to:

G = A+ 28)V2® 65 — A+ B)D.i; (25)
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Assuming that the approximating functions are of radial

basis(4), coefficients A, B, and C are calculated from:

o1 [y )%k _d 143
A—2(1—u) [2(1 v) dr dr(rdr)] (27)
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where 7 stands for the Euclidean distance. The table 1 lists
expressions for ® and ¢, which form depends on the dimen-

sionality of considered problem.

Table 1 Definitions of terms ® and ¢

term 2D 3D

det L | g(X+2a)V* | g% + 2a) Ve
¢ | BQO+2m)¢ | B +2m)¢
s & .kk B kicu

Once the expression for approximating function f is set,
particular solutions from (25) and (26) are determined. In
this study, as approximation functions the Compactly Sup-
ported Radial Basis Functions (CS-RBF) (Wendland’s (%)

functions) are employed(® (7).,

4. Numerical implementation
The process of standard BEM discretization of (21) leads

to the set of algebraic equations in the form of:

[H] {u} - [G] {t} = [[H] [a] - [G] [&] (F]~* {b}
+[G]{¥} (1)

where [H], [G], {u}, {t}, [@], [£] stand for coefficient matri-
ces, vectors of displacements and tractions and their partic-
ular solutions, respectively, and where thermal expansion is

defined as:

{¥} = Dy {n} (32)
where {n} denotes the outward normal vector. Calculation
of the entries of vector {b} involves obtaining the deriva-
tives of temperature and displacements with respect to co-

ordinates. In this study, these derivatives are evaluated by

means of approximating functions, f(z,z'), as presented in

(8), namely:
8.: = diag {[F],, (F]™" {6}} (33)

u;; = [F),, [F]™" {u}, (34)

where [F] and [F], denote the matrices of approximation
functions and their derrivatives, respectively. Hence, entries

to {b} can be expressed as:

{b} = {b}l + {b}z + {b}s + {b}4 (35)

where

(b}, = o), [[Fl,, [F)™ {u}, + (F, (I {u}] (9)

{b}, = X[y, [F],, [F]™! {u}, (37)
{b}; = -D¢],; {¥} (38)
{b}, = -Ddisg {a} [F],, [F]™* {6} (39)
with
[¢], = diag {diag {S} [F],, [F]~" {6}} (40)
§i= 5o (41)

Right-hand side of Eq. (31) is temperature dependent,
however, as the temperature is known/obtained by thermal
analysis, the set is solved in one step. It is worth noting
that the presented implementation involves many symmet-
ric, anti-symmetric, and diagonal matrices, what can be ex-
ploited to the full extent while coding and solving. Further-
more, the DRM related matrices are calculated only once,
as their values dependent on geometry/location, only. Usu-
ally, thermal problem is solved prior to structural analysis
and those matrices are already generated and can be readily
re-used. All that results in an effective numerical implemen-
tation, capable of handling non-linear material properties,
arbitrary geometry and loading conditions, providing mesh-
less treatment of domain integrals and highly accurate cal-

culation results. This is presented in the next Section.

5. Validation examples

This Section includes a series of benchmark tests, validat-
ing the derived formulation. The first example deals with
linear thermoelasticity while in the second the fully non-
linear analysis is performed. In all tests presented here, the

RBF of class C? are used, namely:
fF)=0-7'@r+1) (42)

where 7 stands for normalized radius. The selected class of
RBF ensures stability of calculation results. The higher or-
ders of basis function (higher RBF classes, i.e. C®) have

a higher convergence rate but may lead to computational



instability. The calculation results are compared with an-
alytical and/or FEM solutions. Analytical solutions were
derived (by the authors) for 1D cases. In order to compare
their solution results with 3D BEM models, an appropriate
boundary conditions (of roller type), to produce the unidi-

rectional deformations, are imposed.

5.1. Example 1 - linear analysis

The geometry of the domain and its dimensions, gener-
ated BEM mesh, and location of DRM points are given in
Figs. 1, 2, and 3, respectively. The domain surfaces are dis-
cretized with 192 (quadratic) boundary elements and, to en-
hance interpolation of the domain terms, 200 internal nodes

are employed.

exlernal

Fig.1 Domain geometry and dimensions.

Fig.2 BEM surface mesh.

For material properties, the following values are assumed:
E = 10* [Pa), » = 0.3, & = 1.0 x 107" [1/K]. Constant ma-
terial properties allow us to validate and assess the accuracy
of terms {b}, and {b}, in Eq. (35), as all other terms on
the right-hand-side of it vanish. In order to produce the uni-
directional deformation, the roller type boundary conditions

are applied at surfaces 1-4.

Fig.3 Location of DRM points.

The following load cases are considered:
e case A - uniform temperature: A0 = 0 — 6,..; = 100
°Cl
e case B - surface temperatures: #; = 200 [°C] (inter-
nal), 62 = 20 [°C]| (external), reference: 0.5 = 0 [°C]
e case C - surface temperatures: ¢ = 200 [°C] (inter-
nal), 82 = 20 [°C] (external), reference: @r..; = 50
[°C], pressure: p; = 8 [Pa] (internal)
Fig. 4 presents selected calculation results, demonstrating

their high accuracy for all considered load cases.

—— analytical solution(s)
(1) load case A

(2) load case B 3
(3) load case C

w

<400

displacement, 10% m
F-9

0.20 0.25 0.30 0.35 0.40
radius, m

Fig.4 Calculation results (example 1).

5.2. Example 2 - non-linear problem

In this example two sub-problems are considered. The
first deals with the non-linear structural analysis (with pre-
scribed temperature distribution) and obtained results are
compared with analytical solution. The second test consid-
ers the nonlinear thermal and structural problems. In the

latter the BEM and FEM solutions are compared.

5.2.1. Non-linear structural problem  The domain,



its dimensions and BEM mesh are those of the foregoing ex-
ample (Figs. 1, 2, and 3). The material properties, namely,
modulus of elasticity and coefficient of thermal expansion,
are given by:
E = Egexp (E\0) (43)
a=aoo+arf (44)
where:
¢ (material 1) Ey = 140 [GPa), E; = 0.0033 [1/°C] and
a0 = 19.45-107° [1/°C], en = —5.90-10° [1/°C?],
v=03
¢ (material 2) Eo = 450 [GPa), E; = —0.002 [1/°C]
and ao = 16.80-107° [1/°C], a1 = 3.00-107° [1/°C?],
v =033

The variation of material properties with temperature is

shown in Fig. 5.
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Fig.5 Material properties (example 2).

As known temperature distribution, the following function
is assumed:
In (R2 / 'I')
In(R2/R1)

where R; and R: are an internal and external radii, respec-

0 =06+ (6, —62) (45)

tively (Fig. 1). The data set in this example allows us to
validate terms {b}, and {b}, in Eq. (35). The following
load cases are considered:

for material 1:

e case A - surface temperatures: 6, = 350 [°C] (inter-
nal), #2 = 100 [°C] (external), reference: ..y = 100
[°C], pressures: p; = 4 [MPa] (internal), p2 = 1 [MPa]
(external)

e case B - surface temperatures: ¢, = 400 [°C] (inter-
nal), 62 = 150 [°C] (external), reference: -y = 200
[°C], pressures: py = p2 = 0;

and for material 2:

e case C - surface temperatures: 6; = 500 [°C] (inter-
nal), 82 = 100 [°C] (external), reference: frey = 140
[°C], pressures: p1 = 3 [MPa] (internal), p2 = 0 (ex-
ternal)

The BEM calculation results are compared with analytical
solution and presented in Fig. 6. Again, in all considered

cases high accuracy is achieved.

"y

—— analytical solution(s)
O (1)load case A
O (2)loadcaseB

(3) load case C

displacement, 10 m
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Fig.6 Results (example 2).

5.2.2. Nonlinear thermal and structural problems In
this example, the nonlinear thermal and structural models
are considered and results obtained by means of the BEM
and FEM compared. The BEM solution of thermal problem
is obtained by employing procedure presented in®). That
technique is also based on DRM and, as mentioned in Sec-
tion 4, allows us to reuse interpolation matrices, making the
presented approach numerically efficient.

The domain geometry and (surface) BEM mesh are kept
of previous examples, while (domain) FEM mesh comprises
quadratic hexahedral elements. Mesh details are listed in
Table 2.

Table 2 Mesh details (example 3)

model elements nodes type

boundary internal
FEM 192 627 490 H20
BEM 208 627 209 Q8

As boundary conditions the following values are applied:
surface temperatures: §; = 300 [°C] (internal), 62 = 100 [°C]
(external), pressures: py = 4 [MPa] (internal), po = 1 [MPa]
(external), 6rey = 0 [°C]. To ensure the generated FEM
and BEM models are equivalent, the material properties are



assumed as a linear functions of temperature, namely:

E =217.50 —0.0756 [GPa) (46)
a=22x10"%+6.4x107% [1/°C] (47)
k =98.43 — 0.091550 [W/(m°C)| (48)

where k is the thermal conductivity. In many commercial
FEM packages the program internally evaluates the function
at discrete temperature points with linear interpolation be-
tween those points, that is, piece-wise linear representation
is actually used, i.e.(10) Table 3 lists calculations results.
The temperature distribution obtained by means of FEM
and BEM is, additionally, compared with analytical solution

(which is readily available for thermal problem).

Table 3 Comparison of calculation results (ex-
ample 3). Units: [m] and [°C]

parameter | analytical BEM FEM
0 (r = 0.25) 230.43 | 230.42 | 230.50
8 (r = 0.30) 177.58 | 177.58 | 177.63
8 (r = 0.35) 135.21 135.21 135.24
u(r = 0.20) — | 0.00101 | 0.00104
u(r = 0.25) — | 0.00144 | 0.00148
u (r = 0.35) — | 0.00191 | 0.00197
u (r = 0.40) — | 0.00204 | 0.00209

The small differences in values of displacements are a con-
sequence of differences in results obtained in thermal analysis
(FEM analysis gives higher values of temperature comparing
to BEM and analytical solution). As material properties (in
all examples presented in this paper) vary highly with tem-
perature, it naturally influences results of subsequent struc-

tural analysis.

6. Conclusions

In this paper, the general DR-BEM formulation for anal-
ysis of non-linear thermoelasticity problems was presented.
The required particular solutions for displacements and trac-
tions were derived and provided. Furthermore, numerical
implementation was outlined and its features were briefly
discussed. The method ensures the meshless treatment of
domain integrals and numerically efficient algorithm for anal-
ysis of thermoelastic deformations in an arbitrary geometry,
under arbitrary loading conditions, and capable of handling
materials with temperature dependent properties. The va-
lidity and the high accuracy of the formulation were demon-
strated considering a series of numerical examples, in which
all obtained results were compared with analytical and/or
FEM solutions.
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