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By coupling the moving least squares (MLS) approximation with a modified functional, the
hybrid boundary node method (Hybrid BNM) is a boundary only, truly meshless, method.
Like the conventional BEM, the unsymmetrical and dense coefficient matrix limits its
application to small-scale problems. Recently, the Hybrid BNM has been combined with
the fast multipole method (FMM). In the combined approach, however, the MLS
approximation on a surface with a large number of nodes distributed appears to be another
bottleneck for large-scale computation. In this paper, the tree data structure, used in the
hierarchical decomposition of the domain in FMM, is adapted and applied to accelerate the
MLS approximation. Formulations and algorithm are given and a numerical example
presented to demonstrate the efficiency of the proposed approach.
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1. Introduction

In numerical solutions of engineering problems, two main
difficulties usually arise. One is the discretization of the
geometry and another computational scale. In the last
decade, a world wide effort has been made to devise a new
class of numerical methods, namely, the meshfree or
meshless methods, aimed at eliminating the human-labor
cost of introducing geometric meshes in complex-shaped
domains. Many kinds of meshless methods have been
proposed so far. The hybrid boundary node method (Hybrid
BNM), suggested by Zhang et al. [1], which combines the
MLS interpolation scheme with the hybrid variational
formulation, not only has the dimensionality advantage of
BEM, but also is a truly meshless method, therefore,
substantially simplifies the discretization task. However, like
the traditional BEM, its system matrix is dense and
unsymmetrical, and demands O(N?) memory and O(N°)
operations. In order to reduce the computational complexity
and memory requirement, we have combined the Hybrid
BNM with the fast multipole method (FMM) [2, 3].

In the combined approach [4] (here called FM-HBNM),
the preconditioned GMRES is employed for solving the
resulting system of equations. At each iteration step of the
GMRES, the matrix-vector multiplication is accelerated by
FMM. An oct-tree data structure is used to hierarchically
subdivide the domain into well-separated cells. Only the
coefficients for near nodes are explicitly computed and
stored. The influences of the nodes far from the observation
point are approximated using multipole expansions. As a
result, both the memory and CPU time required for solving
the set of equations are reduced. However, unlike BEM
using element-based interpolation functions to represent the

approximated solutions of boundary variables, Hybrid BNM
uses moving least squares (MLS) approximation. The MLS
approximation can be costly and may lead to a serious
exhaustion of the computer memory. In order to overcome
this shortcoming, we use a binary tree data structure, similar
to the oct-tree data structure used in FMM, to speed up the
MLS approximation. In this paper, we will focus on
evaluation of the MLS shape functions using the binary tree
data structure, while we will first give brief descriptions of
Hybrid BNM and FM-HBNM.

2. The Hybrid BNM and FM-HBNM

The Hybrid BNM bases on a medified variational principle.
Taking 3-D potential problems as an example (for detailed
discussion see [1]), the functions in the modified variational
principle considered independent are potential field within
the domain u, boundary potential field # and boundary
normal flux § . Consider a domain Q enclosed by

I'=T, + T, with prescribed potential # and normal flux 7
at the boundary portions I, and I“q , respectively, the

corresponding variational functional I1 ,, is defined as
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where, the boundary potential # satisfies the essential

boundary condition, i.e., # =& on [,.

Suppose that N nodes are distributed on the bounding
surface of the domain, the potential field within the domain
is approximated using fundamental solutions as follows:

N
u=y ux 0]
1=1



and hence at a boundary point, the normal flux is given by
N s

i 3)
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where y; is the fundamental solution with the source at a

q:

node s; x; are unknown parameters. For 3-D potential
problems, the fundamental solution can be written as
w=t 1 @
4z r(Q,s,)

where Q is a field point; #(Q, s;) is the distance between QO
ands;.

The boundary potential field # and boundary normal flux
g are interpolated by the MLS [1].

ii(s) =ﬁcb,(s)ﬁ, &)
I=1

g(s) =Y ®,(s)4, (6)
1=l

In the foregoing equations, ®,(s) is the shape function of
MLS approximation; #, and g, are nodal values of

potential and normal flux, respectively.

Taking the local sub-domain around each node into
account, the stationary conditions can be obtained by taking
variations in Eq. (1) with respect to the independent
variables. This gives the following set of equations:

Ux=Hi )
Vx=Hq ®
where U, V and H are defined as:
U, = [, uiv,(@)dT ©)
V, = J'rf %’-v, (Q)dT (10)
Hy = [,®, (6w, (Q)dr an

where v, is a weight function and s is a boundary point, I/ is

a regularly shaped local region around a given node s; in the
parametric representation space of the boundary surface.
Therefore, the integrals in Egs. (9), (10) and (11) can be
calculated without using boundary elements (for details refer
to [1]).

For a well-posed problem, either 7, or g, is known at a

node s; on the boundary, thus Egs. (7) and (8) can be solved
for unknown parameters x. Then, by back-substitution into
Egs. (7) and (8), the boundary unknowns are obtained for
both potentials and normal fluxes by solving Egs. (7) and (8)
with H being the coefficient matrix.

The coefficient matrices U and V are dense and
unsymmetrical. It requires O(N*) memory to store them and
O(N?) CPU time to solve them if a direct solver is employed.
If we use an iterative solver, such as GMRES, the M cost of
forming the dense matrix-vector product in the system of
equations will dominate the total cost. In the case of Eqgs. (7)
and (8), the matrix-vector product is equivalent to evaluating
the potentials or their derivates at N nodes, using Eqgs. (2)
and (3). Therefore, it is possible to reduce the cost of
GMRES by accelerating the potential calculation.

In FM-HBNM, we use a constructed hierarchy of boxes to
refine the computational domain into smaller and smaller
regions. At refinement level 0, we have the entire

computational domain. Refinement level /41 is obtained
recursively from level / by subdivision of each into eight
equal parts. This yields a tree structure, where the eight
boxes at level /+1 obtained by subdivision of a box at level /
are considered its children. We stop the box subdivision if
the number of nodes included in the box is smaller than a
given value. If a child box contains no node, we delete it.
We call a childless box a Jeaf and two boxes neighbors if
they are at the same level and share at least a vertex.

Given evaluation point included in a leaf and using the tree
data structure described above, we can divide sum (2) and (3)
into two parts. Part 1 is the sum of the contributions of the
nodes contained in the neighbors of the leaf (these nodes
called near nodes), and part 2 that of the nodes that are
outside all the neighbors (these nodes called far nodes). We
compute the sum for the near nodes directly, while do the
summation for the far nodes by means of fast multipole
expansions at a cost proportional to N at each iteration step
(for details see [4]). Since the coefficients in matrices U and
V are explicitly computed and stored for near nodes, only,
and the computational cost is proportional to &, the overall
complexity for solving Egs. (7) and (8) is of order N.

From the above discussion, we can see that FM-HBNM
only concerns matrices U and V, while leaves matrix H
intact. There are two usages of H in Hybrid BNM. One is
computing the right hand side vector of Eqgs. (7) and (8),
while the other is solving the boundary unknowns & and
q by Eqgs. (7) and (8) after x has been solved. Since the MLS

approximation in Hybrid BNM is conducted on individual
panels separately, the matrix H, unlike U and V, is
diagonally blocked. Even so, when a panel with a large
number of nodes located, the size of the corresponding block
may be extremely large, and the evaluation of the shape
functions in Eq. (11) can be expensive. In order to
circumvent this problem, we use a binary tree data structure
to speed up MLS approximation and reduce the memory
requirements for storing matrix H.

3. Original MLS algorithm

In Hybrid BNM, the MLS approximation is required on the
bounding surface, only, as the nodes lie only on the
boundary of a 3-D body. It is assumed that the bounding
surface of a 3-D body is a union of piecewise smooth
segments. We call these segments panels, and perform MLS
approximation on each panel separately.

In Reference [1], we have proposed a general MLS
approximation algorithm on an arbitrary panel. For a panel
over which randomly located a number of nodes{s’}, /=1,

2, ..., n, the MLS interpolants for a boundary variable f{s) is
defined by

F© =3 p,5)a,6) =p"©)a() (12

where s is a field point with parametric coordinates (s, 2),
defined in the range [0, 1]; and pds), j=1, 2,..., m are
monomials in (s), s2). The monomials pi(s) provide the
intrinsic polynomial bases for f{s). In the study, a quadratic
background basis is used, i.e.

pT(s)=[laslsszaslzss|szsszz]a m=6 (13)
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« Dmax.sl denotes the maximum value of d , among the
nodes included in the cell.
o Dmax.s2 denotes the maximum value of 4; among

the nodes included in the cell.

Consider the biggest cell, which contains the entire panel
and refer this cell as the level 0 or root cell. Given a
subdivision S of the computation cell, if H.s/ is bigger than
Dmax.s1, we subdivide the cell S into two equal cells in s,
direction; and if H.s2 is bigger than Dmax.s2, we subdivide
the cell S into two equal cells in s, direction. This process is
recursively repeated down from the root cell to some finest
level. We refer the cells at the finest level as leaves. In the
next step, we create a neighbor list for each leaf. Taking a
leaf L into account and looping over all other leaves L;, we
consider L; to be L’s neighbor and add it to L’s neighbor list,
if the distances between their centers in both s; and s,
directions are smaller than Dmax.s/ and Dmax.s2 associated
with L;, respectively. A leaf is also a neighbor of itself. Now,
instead of creating an nxn square block of H, we associate
each leaf a jxk sub-matrix hy, where j denotes the number of
nodes included in the leaf, and k& denotes the number of
nodes included in the neighbors of the leaf. This scheme
saves the memory considerably.

With the binary tree data structure, the routine for
computing the shape functions changes to the following
steps.

1. Choose a finite number of nodes on the panel.

2. Determine the support sizes, c;', and a?; , of the weight

function for each node.

3. Create the binary tree data structure to subdivide the
panel into hierarchical cells in the parametric space.

4. Find the leaf L, that includes the evaluation point s.

5. Loop over the nodes included in the neighborhood of L,
« determine the nodes s’ that w(s)>0;
« calculate the right hand side of Eq. (17);
« add contributions to A(s).

6. Solve the inversion of A(s).

7. Loop over all the nodes included in the neighborhood of
L. For each node s’ that w/(s)>0, calculate w(s)p(s’) and
then @, (s) using Egs. (18) and (16).

In the above algorithm, the loop for checking the weight
functions contains only the nodes that are in the
neighborhood of a leaf. When the total number of nodes
located at the panel is large, the CPU time saved by the new
algorithm will be obvious.

5. Numerical results

The proposed technique has been implemented in a
computer code written in C++, and tested with a cube.
Computations for a variety of number of nodes uniformly
scattered on the faces are performed on a desktop computer
with an Intel Celeron CPU (2.40GHz). Following Reference
[5], the support sizes of the weight function, d , and 3,’ in

Eq. (20), are chosen to be 4.0/, and 4.0h,, with A, and h,
being the minimum distances between the neighbouring
nodes in s; and s, directions, respectively. For comparison,
the models have also been calculated using the original FM-
HBNM in the cases where it is capable of solving them.
The CPU time (in second) and memory sizes (in MB) for

computing and storing matrix H required by the new and
original algorithm, respectively, are presented in Figure 1.
From Figure 1, it is seen that the new algorithm is much
faster than the original algorithm and uses less memory.
Computations by means of the original algorithm are
restricted to 21600 nodes (due to hardware limitation), while
the new algorithm is capable of solving problems with the
total number of degrees of freedom up to 150000.
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Figure | Memory usage and CPU timing results

Conclusions

This paper presents an enhanced implementation of MLS
approximation of boundary variables with a binary tree data
structure. The new implementation decreases the execution
time with lower memory requirement, thus significantly
increases the size of problem that can be solved within
available computer resources.

The new algorithm can be exploited in any meshless
method that involves MLS approximation.
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