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In this paper, we employ a meshless point interpolation approximation for the field
variable in the numerical implementation of local integral equations (LIEs) applied
to 2-d transient heat conduction problems in functionally graded materials (FGMs).
Then, the approximation is inherently consistent and the system matrix is sparse like
in standard finite element formulation. In contrast to the weak form FEM
formulations, two kinds of the integral equation formulation are applied. The time
evolution is treated either by using the 8-method or the Laplace transform technique
supplemented with the Stehfest’s inversion algorithm. The method is sufficiently
simple and quite general. The accuracy of the proposed method is tested on several
examples. Comparison is made with the numerical results by using standard domain

elements in numerical implementation of the LIEs.
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1. Introduction

With recent development and research of functionally
graded materials (FGMs), problems in non-
homogeneous media have generated new interest. In
FGMs, the composition and the volume fraction of the
FGM constituents vary gradually, giving a non-uniform
microstructure  with continuously graded macro-
properties. Although the versatile and well established
finite element method (FEM) and the boundary integral
equation method (BIEM) or boundary element method
(BEM) are basically applicable to such problems, some
difficulties may occur in the numerical analysis.

The main goal of this paper is to propose and test a
sufficiently simple numerical technique appropriate for
solution of transient boundary-initial problems in media
with arbitrary variation of material coefficients. In this
study, we confine to 2-d transient heat conduction
problems.

2. Formulation of the problem
The transient heat conduction equation is given by
ou(x,t)
AXu;(x,0)) . - p(X)c————==
(Amx.n) = p(x) o
in Qx[0,T], where u(x,t)is the temperature field,

-w(x,1), (¢))

A(x) is the thermal conductivity, p(x) is the mass
density, cis the specific heat per unit mass and w(x,t)
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is the density of heat sources. In the absence of heat
sources, the governing equation converts to the diffusion
equation with the diffusivity coefficient
x(x) = A(x)/ p(x)c . Without loss of generality, we
assume w(x,#) =0 in this paper. In an initial-boundary

value problem, one should prescribe the initial value of
the potential field

u(x,0)=v(x) at xe Q, 2)
and the boundary values of the potential or the flux
u(n,t)=u(n,t) at nedQp,

—m (A=, at nedQy, ()

where 0Qp and 0Qp are the Dirichlet and Neumann
parts of the global boundary 0 of the domain Q , with
0Qp NQy =0 . The tilde denotes the boundary

densities prescribed by boundary conditions.

3. Local integral equations with singular kernels

Since the governing equation is given by the partial
differential equation with variable coefficients, it is
impossible to find the fundamental solution of Eq. (1) in
a closed form in general. Nevertheless, one can use the
fundamental solution of the Laplace operator, which in
two-dimensional case is given as



C)

with A being an arbitrary constant.

Let ybe an arbitrary interior point in Q and Q° be
an arbitrary subdomain of the domain Q , with
y© € Q° = Q. From the governing equation (1) with

w(x,t) =0, we have the integral identity

ou(x, t)]

{(a(x)u (1)), - p(x)c G(x-y°
of

&)
Applying the Gauss divergence theorem to (5), we can
derive the local integral equation

| A (u; (NG -y )T (n) -
aglc
[ AU ;(x,0G ; (x =y )dQ(x) -
Q(‘
c jp(x)—(x NG(x-y*)dQx) =0,
QC
which will be referred to as the LIE of the 1* kind. The
second term in (6) can be further rearranged. For this

purpose, the A° = A(x°)
A(x) = A(x)— A€ .
theorem, we rewrite Eq. (6) as
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Then, using the Gauss divergence

[ A ;(x,0G ;(x - y©)dQ(x) +
Q(‘
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c ot
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This equation is formally equivalent to equation (6) and
will be referred to as the LIE of the 2™ kind. One
worthwhile difference consists in fact that the domain
integral of temperature gradients is involved in Eq. (6)
even if the medium is homogeneous. After spatial
discretisation, the derived LIEs convert to a set of
ordinary differential equations which can be solved by
using the one-time-step 0-method.
Without going into details, we present the derived
LIE in the Laplace transform (LT). The LIE of the 1*
kind is given as
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and the LIE of the 2™ kind as
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The over bar denotes the LT of the time dependent
quantity. In the Laplace transform approach, the
numerical inversion of the LT is a key issue since it is an
ill-posed problem. Various Laplace inversion algorithms
are available in literature. The advantages and
deficiencies of some algorithms were pointed out by
Maillet et al [1], and Davies and Martin [2] made a
critical study of the various algorithms. Regarding to a
good experience [4] with the Stehfest’s algorithm [3], we
have also used this algorithm in the present analysis.

®

4. Integral form of the balance equation (IFBE)

The general physical balance - principles of any
continuum theory take the form of integral equations.
The governing equations (or field equations) take the
form of differential equations which are derived from
these integral principles with taking into account that
they hold for all arbitrary but small material domains.
Following a reverse path, we can get the integral form of
the balance principle by integrating the governing

equation over Q° c Q. Thus, integrating Eq. (1), we
have

I [(z(x)u,,-(x,:)) - pe 2% )]m() 0, 0
a ot
hence,

| Amyn;(u;(m,0)dT () ¢ jp(x)—(x 1dQ(x) =0
x° of
an
which will be referred to as the integral form of the
balance equation (IFBE).
Eventually, in the LT approach Eq. (11) becomes
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5. Meshless interpolations of the temperature field
Let the field variable u(x,r) or its LT u(x, p) in

QudQ be approximated within subdomain

Q < (QuoQ). Assuming the dimensionalities of both

a

Q_ and Q to be the same, we have a domain type

approximation. In each meshless approximation
technique, the aim is to create shape functions for
approximation of the field variable within the subdomain

Q, using only nodes scattered arbitrarily in the analyzed

domain without any predefined mesh to provide
connectivity of the nodes.
Assuming a finite series representation of the field

variable in a subdomain Q? surrounding the nodal point

q

x*, we have the approximated field given as

N
u()ge = 2B (0" (x%) a3)

a=|

where u(x) stands for u(x,r) or u(x, p) ,Ba(x) are the

basis functions defined in the Cartesian coordinate space,
N is the number of nodes in the support domain of the

point x7, and ¢”(x?) are the expansion coefficients

corresponding to that point. As regards the choice of the
basis functions, we shall consider monomials

Pk(x) € {l,x],xz,x,xz,xlz,xg} for k=1,...,6

as polynomial basis functions and multiquadrics (MQ)

2 mi2
R"(x)= (Ix— x"| +y2)

as the radial basis functions (RBF). Then, the point
approximations become true Point Interpolation Methods
[5], since the derived shape functions possess the
Kronecker delta property [6]. Three different
combinations of these basis functions have been utilized
in the numerical implementation of the local integral
equations in stationary problems [6]. Bearing in mind the
result of the study on numerical stability and patch tests
(6], we confine to PBF + MQ interpolation approach

with M < N

M
+ Z Pk(x)ﬂ(q’k)

“(x)lnq =
s k=1

N
b3 Rn(q,k)(x)a(q.k)
k=1

The approximated field can be expressed in terms of the

(q.7)

shape function ¢/ (x)as

N . .
u(x)ge = 2 ux" )" (x),
s j:]

(14)

in which n(q, j)is the global number of the jth nearest

nodal point of N supporting nodes corresponding tox?.
For more details, we refer the reader to Ref.[6].

Finally, the numerical results will be compared also
with the results obtained by using the standard
quadrilateral elements with quadratic interpolation (QQE
approach). For their numerical implementation, we refer
to Ref. [7].

6. Numerical examples

In order to test the proposed numerical method, we
have considered examples for which analytical solutions
are available. The considered domain is a square Lx L
with the Dirichlet boundary conditions on both the
bottom and top sides, while the Neumann conditions are
assumed on the lateral sides. Although the analytical
solutions are available for several events of
unidirectional variation of material coefficients, we
confine the presented results to exponential gradation of
both the heat conduction and mass density as

/1(X)=/1085x2”', p(x)=poe5x2”‘

In the convergence study for the accuracy of the
numerical results with respect to increasing the density
of nodal points, we have used the average % error
defined as

, in this paper.

N,

APE, = 100J >
a=1

C a _ ex a 2 N’ a 2
[u (%) - u® (x )] /‘é[uex(x )]

where u€(x%)and «®*(x?) stand for the computed and

exact nodal values, respectively, with N, being the total

number of nodes on closed domain QU oQ .

The numerical computations are carried out by using
three different kinds of integral equations (LIE of the 1*
and 2" kinds, and IFBE) combined with various domain-
type approximations. Recall that there is no difference
between the results by the LIE of the 1% and 2™ kinds in
case of non-homogeneous media. In this paper, we
assume the number of the radial basis functions N =16,

with their shape parameters being m=-2and y =2h,

where h is the shortest distance of any two nodal points.
The polynomial basis is given by M =6 monomials.
Owing to the convergence study and comparison of
the results by using various domain-type
approximations, we assume only uniform distributions
of nodal points with h/L being a parameter
characterizing the density of such distributions.

Example 1

In this example, we assume the following initial and
boundary conditions



v(x)=v, =1, u(x,0,0)=u, =1, i(x,L,t)=u; =20,
q(O,xz,f)="‘7(L,X2af)=0-

and the material parameters have been chosen as:
A =1, p,=1,¢c=1,6=3, L=1.

Fig. 1 shows the comparison of numerically computed
temperature field with analytical values at two time
instants by using both the LIE and IFBE in combinations
with the QQE-interpolation and the PBF+MQ
interpolation. The numerical data correspond to the use
of the implicit Galerkin’s scheme from the family of
one-time-step 0-methods, but the difference from the
results by using LT-approach is not visible. Therefore,
we confine to give the CPU-times in the case of LT-
approach. In both the time instants t=0.02 and t=1, they
are the same, since only 1 step is used. In the case of
QQE-interpolation it is 7.8 [sec], while in the PIM it is
84 [sec]. Note that t=0.02 is a very early time when the
initial value of the temperature is not changed in a half
of the specimen, while t=1 is the late time instant when
the temperature distribution represents stationary one as
can be seen from Fig. 2.
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Fig.1 Distribution of temperature along vertical direction
at two time instants t=0.02 and t=1 using 6-method

In all presented numerical results, we have used QQE-
interpolation with 341 nodes (100 quadrilateral quadratic
elements) and PIM with 121 nodes.
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Fig.2 Time evolution of the temperature at midpoint
using (a) 6-method with 50 time steps; (b) LT-
method with 10 LT-parameters at each time
instant. The CPU-time in LT-approach
corresponds to 30 time instants.

The perfect agreement of all numerical results with the
exact ones can be observed, but it should be stressed that
the IFBE in combination with PIM fails at early time
instants when LT-approach is used. This can be seen in
Fig.3. Although the accuracy for IFBE combined with
PIM and presented in Fig. 4 is acceptable, there has been
observed instability with respect to the choice of the time
steps. This instability is expected to be removed by
modification of the selection of support nodes for RBFs
with incorporating also more distant nodes into account.
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Fig.4 Dependence of accuracy on the final time instant
using 8-method with 50 time steps

100
10" o
m._u. 1 LT-method
< - b > —6— IFBE
I\.\.\.\ \\\ ..... & LIE
102 T F=—g-8
b 0-method
T —B-— IFBE
1 —®— LIE
103 Y v — - y
0.04 0.06 0.1 0.2 0.3
h/L

Fig.5 Convergence of numerical results at time instant
t=0.7 with increasing the density of nodal points in

QQE-interpolation

Finally, Figs. 5 and 6 show some results of the
convergence study.
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Fig.6 Failure of the IFBE combined with PIM at certain
nodal point distributions: (a) in ©-method; (b) at
early time instants in LT-approach

Example 2
In this example, the time-dependent boundary condition

is prescribed on one face of the square domain, while the
other faces are insulated. The initial and the boundary
conditions are

v(x)=v, =0, a(x,L)=10t, §x,0,t)=0,

mAO.HN¢Av = |@AN\.NNLV =0.

As compared with Ex.J/, the material parameters are
changed as follows 4, =5,5€{0,1,3}.

In the numerical calculations, we have used the same
distributions of nodal points as in the previous example.
The numerical results shown in Fig.7 have been obtained
by using 50 time steps and the CPU-times corresponding
to the QQE-interpolation and the PIM are 23 [sec] and
65 [sec], respectively. The case of & =0 represents a
homogeneous medium. Since the analytical solution is
not available, the present numerical solution for a



material gradient parameter § =3 is compared with the
BEM solution of the work [4].
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Fig.7 Distribution of (a) temperature, (b) flux at time
instant t=1 along the vertical line for various
gradient parameters by using LIE and 6-method
approach

7. Conclusions

New computational techniques are proposed for
numerical solution of 2-d transient heat conduction
problems in non-homogeneous media. The techniques
consist in combinations of three different kind of integral
equations with two domain-type interpolations of field
variable. One of the interpolation approaches utilizes the
standard quadrilateral quadratic serendipity elements.
The other is a meshless point interpolation method based
on the use of the polynomial functions and the radial
functions. The integral equations are considered on local

subdomains surrounding interior nodes and are non-
singular. Using meshless interpolations, we can easily
deal with domain integrals due to material non-
homogeneity and the problem of mesh generation is
avoided. The time variable is treated either by using the
0-method or the Laplace transform technique with the
Stehfest’s numerical inversion.

The proposed method is quite general as regards the
non-homogeneity and a satisfactory accuracy has been
achieved in numerical tests. Note that the approach
based on the use of the IFBE + PIM exhibits some
instability with respect to the choice of time steps in 0-
method and it fails in some nodal points distributions at
very early time instants in the LT-approach.

The method is open for the use of other meshfree
approximations. The extension of the method to three
dimensions as well as to other applications is
straightforward.
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