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The paper presents the Boundary Element Method (BEM)-based procedure employed for
solving inverse thermoelasticity problems. The BEM formulation is used for highly
accurate and numerically efficient calculation of sensitivity coefficients. The sets of
sensitivity equations are solved with an algorithm in which regularization is inherent via
covariance matrices a priori and/or Levenberg-Marquardt procedure, both combined with
function specification approach. The outlined procedure allows one to retrieve the
multidimensional boundary condition (BC) distribution in steady-state and transient
problems. Strain components and temperatures are used as input data subject to
uncertainties. In presented numerical examples the method is capable of reconstructing
distributed mechanical and thermal loads with reasonable accuracy.
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1. Introduction

The need of dealing with inverse problems is, in many
areas of research and engineering, of growing and vital
importance. Inverse thermoelasticity problems usually seek
to determine the unknown thermal and structural boundary
conditions. In this class of problems measurement data may
contain the measured values of temperatures, fluxes,
displacements, and strains. These measurements can be
obtained via infrared camera, thermocouples, radar, strain
gauges or other measuring devices. In almost all industrial
applications the data set includes the measured temperatures
(by means of thermocouples) and strain components (using
strain gauges). Naturally, all measured quantities are subject
to unavoidable measurement errors/uncertainties.

In this study we discuss an application of BEM-based
technique employed for solving the inverse thermoelasticity
problems. The BEM is used for accurate and numerically
effective calculation of sensitivity coefficients. The set of
sensitivity equations is solved with derived algorithm in
which regularization is inherent via covariance matrices a
priori and/or Levenberg-Marquardt procedure, both
combined with function specification methodology. The
outlined approach allows one to retrieve the multi-
dimensional boundary condition (BC) distribution in steady-
state and transient problems.

The accuracy and stability of the algorithms are verified
by considering the problems of inverse thermoelasticity with
simulated input data specified in the form of strain
components and temperatures subject to random errors. In
presented numerical examples the method is capable of

reconstructing both mechanical and thermal loads with
reasonable accuracy.

2. Problem formulation

The governing equations of thermoelastic deformation
within an arbitrary domain, Q, enclosed by boundary, I, are
given by:
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where p, ¢, k, ©, q, denote mass density, specific heat,

conductivity, temperature, and volumetric heat generation,
while v, G, a, O, u, Poisson’s ratio, shear modulus,
coefficient of thermal expansion, reference (stress-free)
temperature, and displacement, respectively (for plane stress
problems equation (2) requires an adjustment of Lame
constants). In thermoelastic deformation analysis structural
dynamic effects are usually not of concern and can be
neglected.

In inverse analysis the set of boundary condition is
specified incompletely, namely, at some portions of the
boundary the mechanical and/or thermal load is unknown.
Instead, at some points at the external boundary, there is
known an information about the process under consideration
specified in the form of measured, selected strain
components and/or temperatures subject to uncertainties.



Strain and temperature histories at discrete times are given
by:
e(x,.t,)=¢ 1,2,..., Msxn (3)

m, J

j=L2,..,5 m=

0(x,.t,)=0,, j=1,2,....,79 m=1,2,...,Mg (4

where x,, t; are the location of measuring point and the
measurement time, respectively. Subscripts s and @ stand
for strain and temperature, while » is the number of actually
measured strain components.

A frequent situation is, in industrial application
especially, that a very limited number of measurement
points is available, typically due to geometrical
inaccessibility, exposure to severe environment conditions,
and most of all, financial cost of obtaining measurement
data.

One of possible approaches to reconstruction of
multidimensional boundary conditions with the limited
number of measurements, is to parameterize their spatial
distribution [1], [2], and thus, considerably decrease number
of estimated unknowns. Decomposing the total load into its
known (superscript k) and unknown (superscript #) parts,
and then approximating the unknown component, yields:
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where {Q}, and {L}, represent the thermal and structural
loads, respectively, and Y, are spatial functions with knot
points, {, and local coordinates, x, whilst a;, denote
unknown approximation parameters at successive time
steps, i. Constitutive strain-displacement relations and some
manipulations lead to the set of sensitivity equations in the
form of:
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where [J]; are Jacobian matrices, {f}; free terms vectors,
arising from known part of BC(s) set. Vector {€}/ contains

strain components due to thermal expansion, {€}*™, and

prescribed structural loads, and thus, naturally, thermal
inverse problem is solved first, followed by inverse
elasticity one. In all equations superscripts Q and L refer to
thermal and structural parts, respectively.

As the sought-for approximating parameters/variables
are those at the boundary, we employ the Boundary Element
Method (BEM) time-stepping formulation for calculation of
entries to the sensitivity coefficients matrices. For
completeness in the next Section we outline the procedure
and discuss its numerical implementation.

3. Sensitivity equations

In this study, we employ the BEM formulation in
which the domain integrals appearing in boundary integral
representations of both (1) and (2) were converted to
boundary-only by means of the Dual Reciprocity Method
(DRM) [3], exploiting compactly supported Radial Basis
Functions (RBF). Neglecting inertial and damping structural
effects, the resulting set of equations can be written for
thermal part as [4]:

[H1{@} -[G]{q} = [H][®] - [G1[§]1{b} ®

where:

{b} =[R](©} - [F]" (@}, (10)
and

[R]=[F]"<2diag{K}i[F]x,>[F]"—diag{K}c an

in}

whilst for elastic deformation as [5]:

[H]{u} -[G]{t} = [[H][a] - [G][E]1{b} + [G{¥} (12)

where:
{b} = diag{a} [F], [F]"{©} (13)
{(¥}=D®n; &= ?[a de (14)

In the foregoing equations [H], [G], [®], [d], [4], [{] are
coefficient matrices, matrices of particular solutions and
their derivatives. Matrices and [K),, [K]. contain the reduced
derivatives of thermal conductivity, system heat capacity,
while matrices [F], [F], the RBF interpolation function
values, and their derivatives, respectively. Symbols D, a,
and n stand for (reduced by modulus of elasticity)
coefficient of linear expansion, nodal values of the
coefficient of thermal expansion, and unit outward normal
vector, respectively.

System of equations (9)—(14) contains many symmetric/
anti-symmetric (arising from RBF interpolation) and
diagonal matrices, what can be readily exploited while
solving and coding, providing meshless treatment of domain
integrals, and numerically efficient solution of thermoelastic
deformation problem.

Sensitivity coefficient is a measure of the influence of
the measured quantity on the shape of retrieved function.
The larger value of the coefficient the easier solution of the
problem under consideration. If the sensitivity of
measurement is small the data coming from this sensor is
usually meaningless, decreases accuracy and, moreover,
introduces the numerical instability to calculation results due
to unavoidable measurement errors [1]. In systems with
damping/capacity terms the information of changes in
retrieved function reaches the measuring point with a delay,
depending on the thermophysical properties, geometry,
location of the measuring device and/or other factors.
Hence, in that type of systems, the temporal distribution has



its maximum several time steps later than that at which
measurement was actually taken. This feature is presented in
Fig. 1 and 2, where temporal distributions of sensitivity
coefficients are given for the cases of retrieving the
boundary heat flux (Fig. 1) and temperature (Fig. 2). The
influence of the sensor location is also shown, by comparing
values of coefficients for measurements taken at the surface
at which load is unknown/estimated (internal surface) and at
the opposite one (external surface).
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Fig. 1. Example of sensitivity coefficients temporal distribution
(heat flux reconstruction)
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Fig. 2. Example of sensitivity coefficients temporal distribution
(temperature reconstruction)

Fig. 1 and 2 demonstrate, furthermore, why exploiting the
information from several time steps positively influences the
stability and accuracy of solution procedures.

In order to obtain all of entries to sensitivity matrices in
equations (7) and (8), at most two multi-load type forward
solutions are required, only, [1], [6] providing that
measurement time (sampling rate) is constant, what is
usually the case. In this work the outlined BEM-DRM
formulation is employed for that purpose, resulting in highly
accurate calculation of sensitivity coefficients. In the
following Section the technique used for solving that system
is discussed.

4. Estimation of load approximating parameters

Stability of computational procedures, in dealing with
transient problem, can be significantly increased by
exploiting the Function Specification method. The standard
approach assumes that function representing the temporal
distribution is piece-wise constant. This allows one to easily
solve the set of sensitivity equations as the coefficients are
not inter-dependent in time (coupled in time) and simple
sequential methods can be implemented. The main
disadvantage of such procedure is, usually, fast
accumulation of errors, as the estimated parameters from
previous time steps enter the free terms vector of the
subsequent one. It may result in the substantial decrease in
quality of estimation, at the final steps of the process,
especially.

Two techniques are implemented here to increase the
accuracy of the boundary conditions/loads reconstruction,
namely, piece-wise linear approximation of temporal load
distribution and, the procedure, which allows us to take into
consideration an arbitrary number of data sets/time steps.
This procedure is briefly discussed below.

The set of sensitivity equations is restated in the form of
constraints equations, namely:

(31 {o}, = {#}, (15)
[J], =[—l,.,J‘_,,...,J,,,]=[-l,.,.'l',] (16)

where [J],, {¢},, and {f}, denoting the Jacobian matrix,

estimated variables and residual vectors while subscripts i, /,
J stand for considered time, measuring time, and number of
measurement sets taken into analysis, respectively. Vectors
of estimated variables contain also unknown BC values,
namely, their approximation parameters:

¢} ={0,2°}, a7
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The estimates of load interpolation parameters can be
sequentially obtained from:

{a},, ={a}., +{v}, (19
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with auxiliary matrices defined as:

[D], =[J),[P], +[W], @D
(P), =[C]..001 (22)
[C], =[C].., - [P),[D],[P] (23)

and where [W], is diagonal weighting matrix, {v},; are
correction to preliminary estimates of load approximation



parameters, while set-up values of [C];- equal to their
assumed/calculated covariances a priori. The algorithm is
exploiting and including in the procedure measurement data
from successive time steps, updating the previously
calculated estimates. As the algorithm takes into account the
covariances of previous sub-solutions, additional
regularization is achieved.

This approach allows one to take into account an
arbitrary number of time intervals/steps, J, for estimation of
load approximating parameters, however, it should be
pointed out that as inter-dependency between measured data
and estimated parameters separated by large time interval
may be weak, it is usually practical to include only a few (3
to 4) steps.

5. Numerical examples

This Section includes two numerical examples illustrating
capabilities of the technique, demonstrating its robustness
and stability. The first example deals with the transient
thermoelastic deformation while the second presents the
reconstruction of time-invariant loads in the case involving
functionally graded material.

5.1. Inverse transient thermoelasticity problem

Let us consider the 2D inverse thermoelasticity problem in
domain subjected to plane strain loading conditions. The
geometry and dimensions of the domain are given in Fig. 3.
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Fig. 3. Domain geometry and dimensions

Thermophysical properties of the domain material were
assumed constant and that of the typical stainless steel,
namely, E =210 GPa, v=0.33, a = 1.2 E-5 /K, p = 7820
kg/m®, k = 47.4 W/mK, c = 473.4 J/kgK.

As known external thermal BC(s) the following values
of heat transfer coefficients and ambient temperatures were
applied: A, = 1100 W/m’K, T, = 10°C, h, =900 W/m’K
(convective BC (1) — Fig. 4) and T, = 5°C (convective
BC(2) —- Fig. 4). The external surface was considered as
thermally insulated and, in structural analysis, left and right
edges as fully restrained. Both the thermal (heat flux) and
mechanical loads (pressure) at top face were unknown.

The location of measurement points is given in Fig. 4,
where s and T stand for strain and temperature, respectively.
In the example under consideration temperatures were
known/measured at 3 points (1T-3T). All measurements
were subject to random errors of amplitudes as high as
0.5 °C for temperatures and 8.0 E-06 for strain components
(two components measured). It was assumed, furthermore,
that the measurements were taken every 2 s.

Sensitivity coefficients were obtained using BEM time-
stepping DRM formulation (equations (9)—(14)). In order to

achieve the higher accuracy, the quadratic approximation in
time was employed (except for the very first time step when
linear approximation is used) [4].

unknown themal and stuctural loads
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convective BC (2)
Fig. 4. BC(s) and measurement points location

convective BC (1)

The geometry was discretized with 62 quadratic
boundary elements and 66 points in the domain. The BEM
mesh and location of internal points is given in Fig. 5.
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It is worth emphasizing, that the data and error levels,
along with the location of measurement points, were
selected to be the most unsuitable for any method of inverse
analysis, and served here as a good test, verifying both
robustness and stability of the presented approach. The
piece-wise linear temporal distribution approximation was
used with J = 3 (3 time-steps filter length).

Fig. 5. Mesh and internal points locations

In Figures 6, 7, and 8 selected calculation results are
presented. Fig. 6 shows the estimated and exact heat flux
distributions and 50 and 180 s, Fig. 7 presents recovered
pressure distribution at time t = 180 s, while Fig. 8 gives the
domain temperature plot at time t = 200 s.
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Fig. 6. Retrieved distribution of boundary heat flux
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Fig. 7. Retrieved spatial pressure distribution
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Fig. 8. Temperature distribution at time t = 200 s

Despite that the number of measurements used was very
limited, non-linear load distribution applied and,
furthermore, the measurements taken at the opposite
boundary, the algorithm was still capable of reconstructing
both the spatial and temporal load distribution with
reasonable accuracy.

5.2. Inverse problem with functionally graded material
In this example the steady-state analysis of thermoelastic
deformation is presented. The geometry of the problem and
dimensions are kept that of the previous sub-section. The
thermal conductivity of the material was assumed to be
given as:

k=52+150x, +100x, [WimK]  (24)

Remaining boundary conditions and material properties are
those of Example 1. As unknown boundary condition at the
top surface of the domain the non-linear temperature
(thermal restraints) and pressure (structural load) were
assumed.

The measured temperatures were given, again, at 3
points (1T-3T) and, additionally, at point 4T (Fig. 4). Strain
components were specified at points 1s—3s (Fig. 4). In this
example the unknown load approximating parameters were
estimated using an iterative Levenberg-Marquardt technique

[7):

(@) = ()" + [9T ] 0] "0 4 (25)

where £ stands for the number of iteration, p is a damping
parameter calculated using scaled trust-region approach, and
{r}, again, denotes the residual vector. The numerical
results were obtained using the subroutine given in [8] with
default settings/values of all parameters.

Different levels of measurement noise were considered.
Fig. 9 presents retrieved space-variation of boundary
temperature (symbol T) and pressure (symbol P) for errors
as high as 0.3 °C for measured temperatures and 6.0 E-06
for strain components, whilst Fig. 10 and 11 show the
retrieved domain temperatures and deformed shape of the
domain, respectively.
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Fig. 9. Reconstructed load spatial distribution
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Conclusions

In this study we presented an application of the DRM time-
stepping BEM formulation to highly accurate calculation of
sensitivity coefficients in transient and steady-state
thermoelasticity. ~ The  formulation  contains  many
symmetric/anti-symmetric matrices, what can be readily
exploited while solving and coding. Furthermore,



unknowns, which appear in the BEM analysis, are precisely
the variables of interest in inverse reconstruction of
mechanical and/or thermal loads, leading to substantial
savings in resources and time (as intricate, high quality
domain meshes are not required). The system of sensitivity
equations in time-dependent case was solved by means of
the procedure with a priori covariance matrices while the
Levenberg-Marquardt method was employed in the steady-
state one. In transient case, the implemented procedure
reduces the accumulation of errors both by the highly
accurate calculation of sensitivity coefficients and a special
approach in handling the minimization problem.

In the paper, reconstruction of heat flux, temperature and
pressure distribution is demonstrated. The stability,
efficiency and accuracy of the algorithm were verified
considering two examples involving thermoelastic
deformations. As measurements selected strain components
and temperatures were used. In presented numerical
examples, method is capable of reconstructing transient,
distributed mechanical and thermal loads with reasonable
accuracy.
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