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Thin structures are generally solved by the Finite Element Method (FEM), using plate or shell finite 
elements which have many limitations in applications, such as numerical locking, length scaling and 
the convergence problem. Recently, by proposing a new approach of treating the nearly-singular 
integrals, Liu et al. developed a BEM to successfully solve thin structures with the thickness-to-
length ratios in the nano-scale. On the other hand, the meshless Regular Hybrid Boundary Node 
Method (RHBNM), which is proposed by the current authors and based on a modified functional and 
the Moving Least-Square (MLS) approximation, has very promising applications for engineering 
problems due to its meshless nature and dimension-reduction advantage. Test examples, presented in 
this paper, show that the RHBNM can also be applied readily to thin structures with high accuracy. 
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1. Introduction 

The finite element method (FEM) has been a successful tool 
for the analysis of shell structures in engineering using shell 
elements. The shell elements are based on shell theory in 
which many assumptions about the geometry, loading and 
deformation of the structure are introduced when a 3-D 
body is abstracted into a 2-D model. Therefore, various 
pitfalls are also introduced, such as numerical locking, 
length scaling and especially the convergence problem, and 
these limit the FEM in applications in many ways. It is 
advantageous and desirable to turn to 3-D elasticity theory 
in building numerical models for shell-like structures, which 
have non-uniform thicknesses or are linked to bulky solids, 
in a unified formulation. Unfortunately, this has not been 
achieved in the FEM using shell theory, though a great deal 
of research effort has been made in the last three decades. 
Recently, by proposing a new approach of treating nearly-
singular integrals, Liu et al. [1,2] successfully developed the 
BEM to solve thin structures with the thickness-to-length 
ratios in the nano-scale. 

Meshless methods are gaining popularity ever since the 
publication of the element free Galerkin (EFG) method by 
Belytschko et al. [3], in which though no mesh is required 
for the interpolation of the solution variables, background 
cells are inevitable for the integration of ‘energy’. In 1998, 
two meshless methods, the Meshless Local Boundary 
Integral Equation (MLBIE) method by Zhu et al. [4] and the 
Meshless Local Petrov-Galerkin (MLPG) approach by 
Atluri et al. [5] have been developed. Both methods use 
local weak forms over a local sub-domain and shape 
functions from the MLS approximation, and lead to truly 

meshless ones. In 1997, Mukherjee et al. [6] combined the 
MLS with Boundary Integral Equations (BIE) to achieve a 
boundary-type meshless method which they called 
Boundary Node Method (BNM). This method is not a truly 
meshless one yet, as an underlying cell structure is 
inevitable for numerical integration. 

To achieve a truly boundary-type meshless method, a 
Hybrid Boundary Node Method (Hybrid BNM) was 
introduced by Zhang et al. [7], based on the MLS 
interpolation scheme and the hybrid displacement 
variational formulation. In this method, only scattered nodes 
are needed to be constructed on boundary of the domain. 
However, the HBNM has a drawback of “boundary layer 
effect”, i.e. the accuracy of results in the vicinity of the 
boundary is very sensitive to the proximity of the interior 
points to the boundary. To avoid this pitfall, a new meshless 
Regular Hybrid Boundary Node Method (RHBNM) [8] has 
been proposed, in which the source points of the 
fundamental solutions are located outside the domain rather 
than at the boundary nodes as in the Hybrid BNM or other 
hybrid boundary element models. 

The RHBNM does not involve any singular or nearly-
singular integration, so it is possibly viable to thin structures. 
In this paper, several test examples are presented to 
demonstrate the effectiveness and high accuracy of the 
RHBNM in the analyses of the very thin structures, some of 
which are even in the nano-scales, as in [1,2].  

2. The MLS approximation scheme for the 2-D RHBNM 



 

This section gives a brief summary of the MLS 
approximation, of which excellent illustrations can be seen 
in Reference [3]. 

In the view of the fact that this MLS interpolation scheme 
will be coupled later with 2-D hybrid displacement 
variational formulation which uses three independent 
variables, i.e. displacement iu  in the domain, displacement 

iu~  and traction it
~ , 2,1=i , on the boundary, of which the iu~  

and it
~  will be interpolated by MLS scheme. The discussion 

below use the variables u~  and t~  to represent any particular 
component of the displacement and traction respectively, for 
the sake of brevity of index notation. 

In contrast to the BNM, the MLS interpolation in the present 
approach is independently performed on piecewise smooth 
segments nii ,,2,1, L=Γ  which constitute the boundary 

naturally other than on the whole boundary Γ . To 
approximate the functions u~  and t~  on each iΓ  over which 
a number of nodes { } NIsI ,,2,1, L= , are randomly 

located, the MLS interpolants for u~  and t~  are defined as  
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where s  is a curvilinear co-ordinate on iΓ , 11 =p  and 

mjsp j ,,2),( L=  are monomials in s . In this paper, a 

quadratic background basis is used, i.e.  
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The coefficient vector )(sa  and )(sb  is determined by 
minimizing a weighted discrete 2L  norm, defined as 
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where points Is  are boundary nodes on iΓ ; s  is the co-
ordinate of an evaluation point E on iΓ ; N  is the number of 
boundary nodes in the neighborhood of E for which the 
weight functions 0)( >− Issw . 

Solving for )(sa  and )(sb  by minimizing 1J  and 2J  in 
equation (4) and (5), and substituting them into equation (1) 
and (2) gives a relation which may be written as the form of 
an interpolation function similar to that used in the FEM, as 
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with the matrices )(sA  and )(sB  being defined by 
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The MLS approximation is well defined only when the 
matrix A  in equation (9) is non-singular. 

Several kinds of weight function can be seen in the 
literatures. Gaussian weight function corresponding to node 

Is  may be written as 
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where 
II ssd −= , the absolute value of the distance 

between an evaluation point and a node, measured along iΓ , 

Ic  is a constant controlling the shape of the weight function, 

and Id̂  is the size of the support for the weight function Iw  
and determines the support of node Is . The Id̂  should be 
chosen such that Id̂  should be large enough to have 
sufficient number of nodes covered in the domain of 
definition of every sample point )( mN ≥  to ensure the 
regularity of A . 

3. Development of the Regular Hybrid Boundary Node 
method 

The development of the RHBNM is illustrated by the 
following 2-D elasticity problem: 
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where the domain Ω  is enclosed by tu Γ+Γ=Γ ; iu  and it  
are the prescribed displacements and tractions, respectively, 



 

on the essential boundary uΓ  and on the traction boundary 

tΓ ; and n  is the outward normal direction to the boundary 
Γ , with in  components. 

The hybrid boundary model proposed here is based on a 
modified variational principle. The functions to be 
independent are: 
– displacement field in the domain, u ,with iu  components;  
– boundary displacement field, u~ , with iu~  components; 
– boundary tractions, t~ , with it

~  components. 

The corresponding variational functional, HBΠ , is defined 
as in the hybrid BEM model by DeFigueredo and Brebbia 
[9]: 
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In the above equation, the boundary displacement iu~  
satisfies the essential boundary conditions, i.e., ii uu =~  on 

uΓ . By carrying out the variations it can be shown that: 
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where ijσ  and it  are the stress tensor and the traction vector, 

respectively. 

With the vanishing of ABΠδ , the following equivalent 

integral equations can be obtained: 
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Figure 1: The local domain Ωs and the source point PI. 

 
It can be seen that the equation (15) and (16) holds also in 
the sub-domain sΩ  and its boundary sΓ  and sL  (where sΩ  
is the intersection of the domain Ω  and a circle centered at 
a boundary node Js , see Figure 1). Therefore, we can use 
the following weak forms on the sub-domain sΩ :  
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In equation (17) and (18), u~  and q~  on sΓ  are expressed 
equations (6) and (7). Further, we deliberately select the test 
function, v, as the weight function in the MLS 
approximation with the radius Id̂  of the support of the 
weight function being replaced by the radius rJ of the sub-
domain sΩ , i.e. 
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where dJ is the distance between a point Q, in the domain Ω , 

and the nodal point sJ. Thus v equals zero on sL , and hence 

all integrals on sL vanish. 

The u  and t  inside Ω  are defined as 
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where I
iju  and I

ijt  is the fundamental solution with source 
point at a point IP , which locates at the outside of the 
domain and is corresponding to a node Is ; I

ix  are unknown 
parameters; NN  is the total number of boundary nodes. 

For 2-D elasticity problem, the fundamental solution is 
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where 22 ))()(())()((),( III PyQyPxQxQPr −+−= ; Q  
and IP  are field point and source point respectively. And IP  
is determined by 
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where h  is the mesh size; )( Isn is the outward normal 
direction to the boundary at node Is ; and SF  is a scale 
factor.  
As u  is expressed by equation (11), the term jij ,σ  in the left 
hand in equation (6) vanishes. By substituting equation (6), 
(7), (19), (20) and (21) into equation (17) and (18), and 
omitting the vanished terms and the body force, we have: 
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Using the above equations for all nodes, we can get the final 
system of equations:  
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For a well-posed problem, values of either iu  or it  are 
known at each node on the boundary, Therefore, by 
rearranging the governing equations (25) and (26), we 
obtain the final system in term of x  only, and the unknown 
vector x  is obtained by solving the final equations system. 
Displacements iu  and tractions it  at any point inside domain 
Ω  or on boundary Γ  are evaluated by equation (20) and (21) 
without further integrations. 

From the above development, one can see that the present 
method is not merely a truly meshless one, but also a regular 
one, as no singular integrals or nearly-singular integrals are 

involved. So it may be used to solve thin shell-like structure 
problems. 

4. Numerical verifications 

To verify the RHBNM for thin structure problems, three 
test examples are studied in this section, together with 
comparisons with exact solutions (if it is available). In all 
examples, the size of the local domain (radius Jr ) for each 
node is chosen as 1.0h in all computations and the parameter 

Jc  in equation (10) is taken to be such that JJ cr  is 
constant and equal to 4.0. The scale factor (SF) in equations 
(14) for the first example is taken to be 7.0 and for the next 
two examples to be 3.0. Also, in all integrations, 5 Gauss 
points are used on each of the two half-parts of sΓ . 

4.1 Test problem 1: Displacement field problem on an 
ellipse 

The geometry of this problem is shown in Figure 2. The 
half-length of the major axis a  is kept constant in this study, 
while the half-length of the minor axis b  changes from a0.1  
to a6100.1 −× . This setup, therefore, provides a model of the 
ellipse which can be categorized as a thin shell, a thick shell 
and even a bulky solid, according to the values of the ratio 

ab / .  

 
Figure 2: Displacement field problem on an ellipse. 

A planar displacement profile is described on the boundary 
as follows: 

23
2

23
1 33 xyxuyxyu +−=−= . 

Plane strain cases with Young’s modulus 5.2=E  (in 
consistent units) and Poisson’s ratio 3.0=ν  has been 
considered for various ratios ab / . The relative errors of 
tractions 1t  and 2t  along the whole boundary (with 44 
uniformly spaced sample points) are shown in Figure 3. It 
can be seen that the solution accuracy of the present 
RHBNM keeps very high even for the ratio ab /  in the 
micro-scale. 
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Figure 3: Relative errors of tractions 1t  and 2t  along the 

boundary for the problem on an ellipse 

4.2 Test problem 2: thin coating on a shaft 

The second example is taken from Reference [1], of which 
the geometry is shown in Figure 4. The shaft and coating 
have outer radii sr  and cr  respectively, and two cases are 
considered here: (a) the thickness sc rrh −=  is uniform and 
approaching to zero while sr  remains constant, as shown in 
Figure 4a, and (b) both sr  and cr  remain constant, but their 
centers are misaligned, the normalized eccentricity 

/( )c c sx r rδ = − is shown in Figure 4b. In both cases, uniform 
pressure p  acts on the outer circumference of the coating, 
and essential boundary conditions, 021 == uu , are 
prescribed around the inner circumference. Plane strain 
conditions with Young’s modulus PaE 91092.1 ×=  and 
Poisson’s ratio 2.0=ν  are assumed and 40 uniformly 
spaced nodes are used, 20 on the outer circle and 20 the 
inner circle. 

 
Figure 4: Cross section of a shaft with coatings of a uniform 

and b non-uniform thickness. 

For the case (a), the relative error of the radial stress rrσ  at 
point A  is shown in Figure 5 while the coating thickness 
varies in the range of ss rr 101 10~10 −− . Note that as the 
coating thickness decreases, the solution accuracy keeps 
stable and high. Figure 6 shows the normalized radial stress 

rrσ  at point A , Note that the asymptotic behavior of the 
RHBNM solution, which approaches the analytical value of 
the sample problem as 0→δ  (case (a)), and approaches the 
applied pressure p as 1→δ , which is consistent with the 
physical interpretation, and which is almost the same as that 

shown in Reference [1]. Very interesting comparison about 
the results and the number of nodes used between BEM and 
FEM can be seen in reference [1] as well. 

 

Figure 5: Error magnitude of radial stress at point A for 
uniform coating thickness. 

 

Figure 6: Normalized radial stress at point A for non-
uniform coating thickness. 

4.3 Test problem 3: linear displacement field problem on 
an elbow pipe 

In order to show the advantages of the truly meshless nature 
of the RHBNM, another problem of more complicated 
geometry is added here, which is shown in Figure 7. Since 
no analytical solution can be found for a practical load case 
on this structure, to get the accuracy of the RHBNM of this 
problem, a linear displacement field is considered here. 
Displacements are prescribed on all faces of the elbow pipe 
according to the exact solutions. Numerical results of the 
normal and tangential tractions along the middle ring, 
together with the exact solutions, are shown in Figure 8. It 
should be pointed out here that the input file of this problem 
contains only 339 data! 



 

 
Figure 7: The elbow pipe and its main sizes. 

 
 

Figure 8: Normal and tangential tractions along the middle 
ring. 

4. Conclusions and Discussion 

The applicability of the RHBNM for the analysis of thin 
shell-like structures has been verified in this paper. The 
developed RHBNM may provide a very attractive numerical 
tool for the analysis of thin shell-like structures. 

The RHBNM may be more appealing than the BEM due to 
its meshless nature. It only requires randomly scattered 
nodal points to be constructed on the bounding surface of a 
body. Without meshing, it can directly use a solid model for 
3-D object. Therefore, the RHBNM may be an important 
step toward complete analysis automation. 

By coupling with the Fast Multipole Method, the RHBNM 
may be able to solve large complicated structures, such as 
nano-composite. This is planned in the near future. 
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