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This paper reviews existing domain decomposition finite element-boundary element coupling 
algorithms. It further adds a number of interface relaxation algorithms for boundary element-boundary 
element coupling and finite element-boundary element coupling. These coupling algorithms overcome 
some of the limitations of the existing ones. Numerical examples are also given. 
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1. Introduction 

The idea of coupling the finite element method (FEM) and 
the boundary element method (BEM) is by now well known 
as an effective analysis tool, which makes use of their 
individual merits. The first proposed FEM and BEM 
coupled formulation was presented by Zienkiewicz et al. [1]. 
An extensive literature survey on this topic can be found in 
[2-5]. The conventional coupling methods employ an entire 
unified equation for the whole domain by altering the 
formulation of one of the methods to make it compatible 
with the other. However, the implementation of the 
conventional coupling procedures requires a suitably 
integrated FEM-BEM software environment, which 
necessitates merging two different kinds of programs. In 
order to preserve the nature of both the FEM and BEM, the 
domain decomposition FEM-BEM coupling methods have 
been developed [6-10]. In these methods, separate 
computing for the BEM and FEM sub-domains and 
successive renewal of the degrees of freedom on the 
interface of both sub-domains are performed to reach the 
final convergence. The domain decomposition coupling 
methods appear to be promising. However, the important 
issue of convergence of the domain decomposition coupling 
methods is not fully addressed. Moreover, some existing 
domain decomposition coupling methods are not applicable 
for solving problems at which the Neumann boundary 
conditions are specified on the entire external boundary of 
the FEM or BEM sub-domains. 

In boundary element analysis, sub-domain partition may be 
employed when the domains under consideration are 
governed by individual differential equations and/or 
constructed of different materials. Besides, in the case of 
domain with complicated boundary profile, the domain may 
be decomposed for better computational efficiency and 
accuracy. In the conventional BEM-BEM coupling 
formulation, sub-domains equations are collected into a 
system of equations while satisfying the continuity and 
equilibrium conditions along the interfaces. However, the 
conventional techniques requires access to the system 
matrices which will limit the BEM-BEM coupling to users 
having access to source codes. Kamiya et al. [11] utilized 
the Neumann-Neumann and Dirichlet-Neumann renewal 
algorithms for BEM-BEM coupling. 

Interface relaxation is more general than the traditional 
domain decomposition methods in that it allows unrelated 
PDE problems on different sub-domains, see references [12-
16]. Elleithy and Tanaka [17] presented two interface 
relaxation algorithms for FEM-BEM coupling. 

The main objective of this paper is to formulate a population 
of FEM-BEM and BEM-BEM coupling algorithms. Several 
interface relaxation coupling algorithms are presented. The 
algorithms make it easy to handle different physical models 
and to reuse existing FEM and BEM codes/software. 

2. FEM-BEM Coupling 

Consider Figure 1, where the domain of the original 
problem is decomposed into FEM and BEM sub-domains. 
The corresponding boundary integral equation for the BEM 
sub-domain is given by: 

[ ]{ } [ ]{ } BonqGuH Γ=      (1) 
where, { }u  and { }q  are column matrices containing the 
boundary nodal values for the potentials (displacements) 
and the fluxes (tractions). [ ]H  and [ ]G  are influence 
coefficient matrices. For the FEM sub-domain, the 
assembled element equations are given by: 

[ ]{ } { } FonfuK Ω=      (2) 
where [ ]K  is the stiffness matrix for the system, and { }u  
and { }f  are the nodal potentials (displacements) and 
integrated flux (force) vectors, respectively. Now, let us 
define the following vectors: 

{ }I
Bu : interface potentials (displacements), approached 

from the BEM sub-domain 
{ }B

Bu : non-interface potentials (displacements) in the 
BEM sub-domain 
{ }I

Fu : interface potentials (displacements), approached 
from the FEM sub-domain 
{ }F

Fu : non-interface potentials (displacements) in the 
FEM sub-domain. 

Similarly, one can define the flux (tractions) and the 
integrated flux (force) vectors for the BEM and FEM sub-
domains, respectively. 
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Figure 1: Domain decomposed into FEM and BEM sub-
domains. 
 

Equations (1) and (2) may be partitioned as follows: 
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At the interface, the compatibility and equilibrium 
conditions should be satisfied, i.e., 

{ } { } II
F

I
B onuu Γ=      (5) 

{ } { } II
F

I
B onqq Γ−=     (6) 

The relationship between { }I
Fq  and { }IFf  may be given 

as: 
{ } [ ]{ } II

F
I

F onqMf Γ=    (7) 
where [ ]M  is the converting matrix, which depends on the 
interpolation functions used to represent the flux (tractions) 
on the interface. Using Equations (6) and (7) the equilibrium 
conditions at the interface may be written as: 

{ } [ ]{ } II
B

I
F onqMf Γ=+ 0    (8) 

In Section 2.1, we briefly review the existing domain 
decomposition FEM-BEM coupling algorithms. Sections 
2.2 and 2.3 summarize the interface relaxation FEM-BEM 
coupling algorithms presented by Elleithy and Tanaka [17]. 
Section 2.4 presents a new interface relaxation algorithm for 
the coupling of FEM and BEM. 

2.1. Domain decomposition coupling algorithms 

The sequential Dirichlet-Neumann FEM-BEM coupling 
algorithm may be described as follows [9,10]: 

Set the initial guess { }I
B,0u . 

 Do for ,...,,n 210= , until convergence 
 for the BEM sub-domain, solve: 
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 for  { }I
nB,q  

 for the FEM sub-domain, solve: 
 { } [ ]{ } 0=+ I

n,B
I

n,F qMf  for { }I
n,Ff  
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 for { }I
nF,u  

 apply { } { } { }I nF,
I

n,B
I

1nB, uuu θθ +−=+ )1(  

where θ  is a relaxation parameter to ensure and/or 
 accelerate convergence. 

The parallel Neumann-Neumann FEM-BEM coupling 
algorithm may be described as follows [8]: 

Set the initial guess { }I
B,0q  and { }I

,0Fq . 
Do for ,...,,n 210= , until convergence 

 for the BEM sub-domain, solve: 
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 for { }I
nB,u  

 for the FEM sub-domain, solve: 
 { } [ ]{ }I

n,F
I

n,F qMf =  for { }I
n,Ff  
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 for { }I
nF,u  

 apply { } { } { } { }( )I
nB,

I
nF,

I
nB,

I
1nB, uuqq −+=+ β  

 apply { } { }I
nB,

I
1n,F qq 1++ −=  

where β  is a relaxation parameter to ensure and/or 
accelerate convergence. 

The parallel Dirichlet-Neumann FEM-BEM coupling 
algorithm may be described as follows [8]: 

Set initial guess { }I
B,0u  and { }I

,0Fq . 

Do for ,...2,1,0=n , until convergence 
 for the BEM sub-domain, solve: 
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 for  { }I
nB,q  

 for the FEM sub-domain, solve: 
 { } [ ]{ }I

n,F
I

n,F qMf =  for { }I
n,Ff  
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nF,u  

 apply { } { } { }I
n,F

I
n,B

I
1nB, uuu γγ +−=+ )1(  

 apply { } { }I
nB,

I
1n,F qq −=+  

where γ  is a relaxation parameter to ensure and/or 
accelerate convergence. 

A drawback of the existing domain decomposition FEM-
BEM coupling algorithms is that they produce non-unique 
solutions for problems at which the Neumann boundary 
conditions are specified on the entire external boundary of 
the FEM sub-domain. 

2.2. Geometric contraction based FEM-BEM coupling 
algorithm 

Rice et al. [16] presented an interface relaxation algorithm 
for the solution of elliptic differential equations. The 
algorithm estimates a new solution for each sub-domain by 
solving a Dirichlet problem. Elleithy and Tanaka [17] 
utilized the algorithm for FEM-BEM coupling. The 
coupling algorithm may be described as follows: 
 Set initial guess { }I

,0Fu  and { }I
B,0u . 



 

 For ,...,,n 210= , do until convergence 
 for the BEM sub-domain, solve: 
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 for { }I
nB,q  

 for the FEM sub-domain, solve: 
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 and 

{ } [ ]{ }I
n,F

I
n,F qMf =  for { }I

nF,q  

 apply { } { } { } { }( )I
nF,

I
nB,

I
nB,

I
1nB, qqαuu +−=+  

 apply { } { }I
1nB,

I
1nF, uu ++ =  

 where α  is a relaxation parameter to ensure and/or 
 accelerate convergence. 
The geometric contraction based FEM-BEM coupling 
algorithm is suited for solving problems at which the 
Neumann boundary conditions are specified on the entire 
external boundary of the FEM or BEM sub-domains. 

2.3. Robin relaxation FEM-BEM coupling algorithm 

This method predicts new values at the interface by making 
a convex combination of Dirichlet and Neumann data from 
the neighboring sub-domains [14]. Elleithy and Tanaka [17] 
utilized the algorithm for FEM-BEM coupling. The 
coupling algorithm may be described as follows: 

Define { } { } { }I
n,F

I
n,F

I
nB, uqg ρ+−=+1  and 

{ } { } { }I
n,B

I
n,B

I
n,F uqg ρ+−=+1  where ρ  is a 

relaxation parameter to ensure and/or accelerate 
convergence. 

 Set initial guess { }I
,0Fu  and { }I

,0Bu . 
 For ,...,,n 210= , do until convergence 

for the BEM sub-domain and with the Robin boundary 
conditions on the interface, solve: 
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 for { }I
n,Bu  

and { }I
nB,q  

for the FEM sub-domain and with the Robin boundary 
conditions on the interface, solve: 
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 and 

{ } [ ]{ }I
n,F

I
n,F qMf =  for { }I

nF,u  and { }I
nF,q  

apply { } { } { }I
n,F

I
n,F

I
nB, uqg ρ+−=+1  

apply { } { } { }I
n,B

I
n,B

I
n,F uqg ρ+−=+1  

This coupling algorithm is also capable of handling 
problems at which the Neumann boundary conditions are 
specified on the entire external boundary of the FEM or 
BEM sub-domains. 

2.4. Dirichlet/Neumann averaging FEM-BEM coupling 
algorithm 

The Dirichlet/Neumann averaging is one of the simplest 
algorithms for the solution of composite PDEs [16]. In this 

section, we utilize the interface relaxation algorithm for 
FEM-BEM coupling. The coupling algorithm may be 
described as follows: 
 Set initial guess { }I

,0Fu  and { }I
B,0u . 

 For ,...,,n 420= , do until convergence 
 for the BEM sub-domain, solve: 
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 for the FEM sub-domain, solve: 
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 for the BEM sub-domain, solve: 
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 for the FEM sub-domain, solve: 
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nB, uuu 12122 )1( +++ +−= ϕϕ  

 apply { } { } { }I
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where 1ϕ  and 2ϕ  are relaxation parameters to ensure 
and/or  accelerate convergence. 

3. BEM-BEM coupling 

Consider Figure 2, where the domain of the original 
problem is decomposed into m  BEM sub-domains, 

m,,, ΩΩΩ �21 . Let )i(S  be the set of indices of those 
sub-domains that are neighbors of the sub-domain iΩ . 
Now, let us define the following vectors: 

I
iu : potentials (displacements) in the sub-domain iΩ  at 

the interface with all neighboring sub-domains, i.e., 
)ij(I

i
I
i uu �=  for all )i(Sj ∈ . 
B
iu : non-interface potentials (displacements) in the sub-

domain iΩ . 
Similarly, one can define the flux (tractions) vectors for the 
BEM sub-domains. The discretized integral equations for 
the BEM sub-domains )1( m,,i �=  may be written in the 
following form: 
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At the interface )( klΓ  between two adjacent sub-domains, 

kΩ  and lΩ , the compatibility and equilibrium conditions 
should be satisfied, i.e., 
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Figure 2: BEM-BEM coupling. (a) Domain decomposed 
into m  sub-domains. (b) BEM modeling. 
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In Section 3.1, we briefly review the Neumann-Neumann 
BEM-BEM domain decomposition coupling algorithm [14]. 
Sections 3.2 through 3.4 present several new interface 
relaxation BEM-BEM coupling algorithms. 

3.1. Neumann-Neumann BEM-BEM coupling algorithm 

The coupling algorithm may be described as follows [11]: 
Set initial guess { }I

,0iq  for the BEM sub-domains 
)1( m,,i l= . 

Do for ,...,,n 210=  until convergence 
 for m,,i l1=  
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 where, β  is a relaxation parameter to ensure and/or 
 accelerate convergence. 

3.2. Geometric contraction based BEM-BEM coupling 
algorithm 

The coupling algorithm may be described as follows: 

Set initial guess { }I
,0iu  for the BEM sub-domains 

)1( m,,i l= . 
 For ,...,,n 210= , do until convergence 
 for m,,i l1=  
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 where α  is a relaxation parameter to ensure and/or 
 accelerate convergence. 

3.3. Robin relaxation BEM-BEM coupling algorithm 

This coupling algorithm may be described as follows: 
Define { } { } { } )ji(I
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)i(Sj ∈  where ρ  is a relaxation parameter to ensure 
and/or accelerate convergence. 
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 For ,...,,n 210= , do until convergence 
 for m,,i �1=  
 with the Robin boundary conditions on the interface 
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3.4. Dirichlet/Neumann averaging BEM-BEM coupling 
algorithm 

The coupling algorithm may be described as follows: 
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 where 1ϕ  and 2ϕ  are relaxation parameters to ensure 
and/or  accelerate convergence. 

4. Numerical Examples 

As an FEM-BEM coupling example, consider the potential 
flow problem shown in Figure 3(a). The domain of the 
original problem is decomposed into BΩ  and FΩ  which 
are governed by Laplace equation. The boundary conditions 
are selected such that 00 =)y,(u , 200=)y,a(u  and 
zero flux elsewhere. Figure 3(b) shows the discretization for 

1=FB aa , where the domain is modeled by 18 linear 
boundary elements and 40 linear triangular finite elements. 
For 1=FB aa  and 2=FB KK , Figure 4 shows the 
applicable range and optimal values of the relaxation 
parameters obtained using different interface relaxation 
FEM-BEM coupling algorithms. Note that for the 
Dirichlet/Neumann averaging algorithm we set 

ϕϕϕ == 21 . For the Robin interface relaxation FEM-BEM 
coupling algorithm the relaxation parameter might be 
assigned the value 01.=ρ , as this is determined as the 
optimal value. With the increase of ρ , the algorithm 
remains converged but with a larger number of iterations. 
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BEM
sub-domain

a

02 =∇ uK F 02 =∇ uKB

0=q

200=u
0=u

y

x

(a)

(b)  
Figure 3: Potential flow problem. (a) Domain decomposed 
into FEM and BEM sub-domains. (b) FEM-BEM 
discretization. 

El-Gebeily et al. established the convergence conditions for 
the sequential Dirichlet-Neumann, parallel Dirichlet-
Neumann and parallel Neumann-Neumann FEM-BEM 
domain decomposition coupling algorithms [18]. We 
verified the applicable ranges and optimal values of β , γ  
and θ , using the convergence and optimal convergence 
conditions given in reference [18]. For the Robin interface 
relaxation and the geometric contraction based coupling 

algorithms, the convergence conditions are to be established 
and this may be considered for future work. 
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Figure 4: Applicable range and optimal values of the 
relaxation parameters ( 1=FB aa  and 2=FB KK ). 
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Figure 5: BEM-BEM coupling example, potential problem 
with the domain decomposed into three sub-domains. 

As an BEM-BEM coupling example, let us reconsider the 
potential flow problem but with the domain decomposed 
into three sub-domains (Figure 5). The Neumann-Neumann 
interface relaxation algorithm is not suited for solving this 
problem. The problem was solved using the geometric 
contraction based BEM-BEM coupling algorithm. The 
results agree very well with the analytical solution. Figure 6 
shows the applicable ranges and the optimal values of the 
relaxation parameter α  for different combinations of ,K1  

2K  and 3K . For example α  should be within [0.02-0.54] 
to assure convergence and the optimal value is determined 
as 0.38, for ,.K 011 = 012 .K =  and 023 .K = . 



 

 

Conclusions 

In this paper, several new interface relaxation coupling 
algorithms are presented. The interface relaxation coupling 
algorithms make it easy to implement different software for 
different sub-domains. Further, they are easily extendable to 
solve nonlinear problems, which will exploit further 
possibilities of more complicated and large-scale problems. 
The wide class of the coupling algorithms, presented in this 
paper, seems to have the potential to work effectively. 
However there is still much to be learned about their 
behavior and about how to choose among them or to choose 
their parameters. These issues may be considered for future 
investigations. 
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Figure 6: Applicable ranges and the optimal values of the 
relaxation parameter α  for different combinations of ,K1  

2K  and 3K . 
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