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The Laplace equation in two dimensions is considered in a domain enclosed by smooth curve.

Dirichlet data are prescribed on a part of the boundary, while Neumann data are so prescribed

on the other part of the boundary that some part of the boundary is left with no prescribed

boundary data. This kind of under-determined problem is not uniquely solvable, and one of the

solutions is defined in terms of a variational problem. As the necessary condition for a functional

to attain the minimum, primary and adjoint boundary value problems of the Laplace equation

are derived. A direct method of solution using the BEM is presented. Simple examples are shown

to demonstrate the validity of our treatment.
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1 Introduction

Let  be a simply connected bounded domain en-
closed by a smooth boundary I’ in R?. Let n be the
exterior unit normal to the boundary.

We consider the Laplace equation;
-Au(x)=0, €N (1)
subject to Dirichlet and Neumann data;

ou B
ur, =8 and == qlr, = ¢ (2)

given on respective non-zero measure parts of the bound-
ary T’y and T'y. Here we notice that the components '«
and Ty can be taken arbitrarily as long as '« NI =
¢ and T, UT, # I'. This problem is called under-
determined problem, and it can be understood as an
identification problem of boundary values in the con-
text of inverse problems.

We can interpret our under-determined problem as
an exterior field problem in electro-statics by embedding

the domain € into the whole domain R?. We regard the

boundary components I'y and I'q as sheet electrodes.
Electric potential @ is prescribed on [y, and electric
current § is prescribed on I'y. Then the electro-static
field u(z) induced by the charge on the electrodes can
be expressed by the sum of two single layered potentials

as follows:

u(z) = /1: G(z;9)o(y)dT(y)

+ | G(=z;y)ow)dl(y), =€R*\(TuUT)

Tq
where G(z; y) is the fundamental solution to the Lapla-

cian;
-AG(z;y) = 6(= —y) (3)

with the Dirac measure é at the point . In two dimen-
sions we know

1 1

i “

G(z;y) =

The continuous function o(y) denotes the density of

electric charge on I'y UTq.



Since the single layered potential is continuous every-

where in R?, we have

u(z) = /r G(2; y)o(y)dT(y)
+ /r G(w;v)o(y)dT(y), = €Tu.

On the other hand, since the double layered potential
is discontinuous on the boundary T', and it satisfies the

jump relation, we have

2= [ 2 o) - boto
+ [ sm@newir),  ser,

for the smooth boundary.
From the boundary conditions eqn (2) we see that
the density function must satisfy the following system

of boundary integral equations.
[ ceeware)+ [ s
u q
= @i(e), zely

and
-yo@+ [ ez @ W)e )W)
+/pq %(w;y)v(y)dl‘(y) =q(z) =e€l,.

This discussion leads to the indirect boundary element

method for an approximate solution of the under-determined

problem.

In the direct boundary element method we start with
* the fact that the boundary values u[r and g|r should
satisfy the boundary integral equation;

Fu(=) + /P o (s ()T w)

= /r G(2;w)e@)dT(w), =€T. (5)

In the preceding paper(l), the authors presented an
idea for the direct variational method by paraphras-
ing the inverse boundary value problems of the Laplace
equation into primary and adjoint problems. In the
present paper, we are concerned only with the under-
determined problem, and we consider the direct bound-
ary element method by showing some numerical exam-

ples.

2 Variational Problem

Let I'; and I'; be complement sets of ', and Tq
respectively. We recast the problem eqns (1), (2) into
the following variational problem: Find u|rg = w that

minimizes the functional
@)= [ ld@o)-g@PaE o)
subject to )
-Au(ziw) =0, € 7
ulp, =4 and ulrg =w. 8)
The first variation of the functional eqn (6) is given
in the form(z);
I (@l = 22 (a50), (©)

where v(2;w) is the solution of the following adjoint

problem to the primary problem eqns (7), (8);
—-Av(z;w)=0, TN (10)
vlrg =0 and o, =2{g(z;w) —q(z)} . (11)

The functional J(w) attains its minimum Jw)=0
at any solution u(z) of the problem eqns (1), (2). Con-
versely the necessary condition

ov
on

for J(w) to attain the minimum yields the trivial solu-

J'(w)lrg =

Irg =0 (12)

tion v(z;w) = 0 of the adjoint problem eqns (10), (11).
This implies glr, = g, which corresponds a solution
u(e) of the problem eqns (1), (2). Therefore our vari-
ational problem consisting of the minimization of J (w)

is equivalent to the problem eqns (1), (2).

3 Boundary Element Method

We divide the whole boundary I into the series of n
boundary elements as ' ~ T™* = UJ=1 Ty for its approx-
imation, where h stands for some representative size
of the boundary elements. Here the boundary element
subdivision should be in accordance with the boundary
components [, a.ndv I,.

We approximate the boundary values ufr and gjr
by introducing the interpolation functions N. i(2) in the

form;

ulr 2 u®(2) = Y~ Nj(=)u;, (13)
Jj=1

qlr > ¢"(e) = iNj(w)qp eel (14)

J=1



with approximate nodal values u; and g; to the exact
nodal values u(z;) and g(z;), respectively, at the nodes
z; ( = 1,2,--- ,n) on the boundary I We approxi-
mate the boundary values v|r and r|r = g—:: also in the

form;

olr = () = 3 Wy @)y, (15)
i=1

rle~r*2) =) Nj(z)r;, €T (16)
J)=1

with approximate nodal values v; and r; to the exact
v(x;) and r(z;), respectively, at @; on I'. We take
those n nodes @, as collocation points in order to fully
discretize the boundary integral equations.

We apply this discretization procedure to the bound-
ary integral equation (5) corresponding to the primary
problem eqns (7), (8), which results in the system of

linear equations in the matrix form;

[(H]{u} = [GHq}. (17)

We apply the procedure again to a boundary integral
equation that corresponds to the adjoint problem eqns
(10), (11) to obtain

[HH{v} = [Gl{r} (18)

with the same n x n coefficient matrices [H] and [G].

We denote by n; the number of nodes on I'y, and

by n2 the number of nodes on TI'y, respectively. Let .

ni = n —n; and n§ = n — n2, being the respective
numbers of nodes on I'; and I';. According to the re-
spective boundary components I'y and I'; we can write

" the column vectors {u} and {q} in the form;

w=(z} we{2).

where the n, nodal values u; on I’y are collected in
{u.}, and the nf nodal values on I'{ in {u2}, whereas
the n, nodal values g; on I, are collected in {q,}, and
the n$ nodal values on I'; in {q,}. We may write this
partition in a more explanatory way as

w={n o sk

u2 on

@={% o}

on }na

(19)

where the dimension of each column vector is indicated.
In the similar way we write

{v}={v, on I‘f,} Ins ,

v2 on I, In2

{1'}={ r1 on T } ;:; '

C
ro on I

(20)

Then the systems eqns (17) and (18) can be written

respectively in the partitioned form;

n L3
A~~~
1 u1
[at =0 ]{ 3]}
n; n2
~~ A~
q
=[ e &P ]{ - } (21)
and
ns na
~~ ~~
(=m0 ) {3}
ny ng
- ~ -
r
=[G$2) lelS) ]{ ,,; } (22)

where numbers of columns of the coefficient matrices
are indicated.

Before discussing a direct method for the solution of
linear systems of equations (21) and (22), we outline
the indirect boundary element method. We divide the
boundary component I'y intonthe series of n; bound-
ary elements as 'y ~ 't = U T; for its approxima-

= ny1+ny
tion. Similarly we divide [q ~ | J T;. We shall

j=n1+1
consider constant boundary elements for simplicity by

taking nodes &; at the middle of each T';.
The density o:(:c) on I'y N Ty is approximated in the

form:
ni4ng

olr,ur, > o"(2) = z oix;(=)
ij=1

with approximate nodal values o, to the exact o(z;)
and the characteristic set functions x;(«) for the ele-
ment T'y;

1 (z€Ty)
Xj(a’)={0 (:ﬁlrj‘)-

k in place of the exact

By using the approximation o
o, the method of collocations in which the system of
boundary integral equations are collocated at the nodes

@ (i=1,2,... ,m +n2) yields

bt ny+ny
le /r,- G(:ae.-;z.l)all"(y)aj+j=§.H /r,» G(zi;y) dT'(y)o;
=u(zi) (£=1,2,...,m)



and

- -zl;a.- +E/F %(w.-;y) dl'(y)o;
ni+nz
+ (=i ¥)dT(y)o; = G(x:)
J—nzx+l 6n(a:) ’

(z=m+1,n1+2,... , 1 +n2)

We solve this linear system of equations for n; + n; un-
knowns o;. The approximate electro-static field u”(z)
to the exact u(x) at z € R?\ (T, UI‘q) can be obtained
by the formula;

M) = S : o
u(z) = 2; [P G drwe;

"l +n32
+ / G(@; y) dT()o;.

j=ni1+1

4 Direct Method of Solution

We insert boundary conditions of primary and adjoint
problems into the partitioned systems of eqns (21), (22):
From eqn (8) we have

{wi}={:}, {u}={w}. (23)

From eqn (11) we have

{1} ={0}, {v2}=2({a,} - {2.}), (24)

and from eqn (12) we have

{r.} = {0}. (25)

.Therefore the systems eqns (21), (22) are reduced to the

form;

@
[ B HY ]{ o’ }
= (1) (1) aQ 26
[t & ]{%"H%} ()

and

0] 2}

=[ 6P G?’]{"'; }, (27)

respectively.

We combine eqns (26) and (27). We take unknown

nodal values to the left of the equation to obtain

n; n ny ny

Lt N e N N

q
-¢" HY o -iGP w
o o -G? ng) ™
V2
ni n2
~~ ~~
_HY oo -
=[ Igl Gg) {;2‘ } (28)

We notice that the coefficient matrix on the left hand
side of the augmented new system of linear eqns (28) is

square of order 2n.

5 Numerical Example
Suppose that the harmonic function
u(z1,22) = 27 — 23 = r? cos(29) (29)

in two dimensions with the polar coordinates z; = r cos J,
Z2 = rsin 9 serves as a solution of the under-determined

problem eqns (1), (2) in the unit circle

={(m9) | osr=y/adtag<1, 05:9<27r}

(30)
with the Dirichlet data

d=cos(29) on Tu={(1,9) | 0<9<x/2}
and the Neumann data
g=2cos(29) on Ty={(1,9) | r<9<3x/2}

as shown in Fig. 1.

a=q g oo’
Fig. 1 Under-determined problem
The collocation boundary element method is used.

The u- and v-values along the boundary are approxi-

mated by using C° linear elements. The g- and r-values



along the boundary are also approximated by using c°
linear elements. However at the edge of the boundary
components I'y and T'y we take the double nodes tech-
nique in order to allow possible discontinuity of g and r
at the edges.

The boundary I' = 9% is uniformly divided into (a) 48
and (b) 96 boundary elements respectively as shown in
Fig. 2, where the nodes on the boundary are indicated
by small black dots.

(a)

(b)

Fig. 2 Boundary elements

Calculated profiles of u" and ¢" against the central
angle ¥ (0 < 9 < 2x) are depicted in Fig.3 with refer-
ence to the exact u and g along the boundary I'. The
calculated ¢" is in good agreement with the exact g on
Iu, and the calculated u® is in fairly good agreement
with the exact u on I'y. The calculated u” and ¢* are
deteriorated on I' \ (I'y UT).
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Fig. 3 Exact and calculated u”, ¢" on the boundary

6 Conclusions

The under-determined pmblefn is considered for the
Laplace equation in two dimensions. By introducing a
functional to be minimized, the solution of the inverse
problem is understood as the minimizer of the func-
tional. The necessary condition for the functional to
attain the minimum is paraphrased by the primary and
adjoint boundary value problems of the Laplace equa-
tion. The direct boundary element method is applied to
obtain numerical solution of the problems, yielding an
augumented system of linear algebraic equations. The
linear system of equations can be solved directly. A test
example merely suégéét.ed that the calculated results are
acceptable in the vicinity of the boundary components

where boundary data are prescribed.
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